
Tuning RTI Performance for an
EW T&E Federation

Mr. Clyde Harris
 Mr. Jerry Black

Science Applications International Corporation

Presented at the International Test and Evaluation Association
Modeling and Simulation Workshop
7-10 December 1998, Las Cruces, NM

JADS JTF
http://www.jads.abq.com
11104 Menaul NE
Albuquerque, NM 87112-2454
(505) 846-1291
FAX (505) 846-0603

A Technical Paper
from the

Joint
 Advanced
 Distributed
 Simulation
 Joint Test Force

Tuning RTI Performance for an EW T&E Federation

 Mr. Clyde Harris
Mr. Jerry Black

Science Applications International Corporation
JADS JTF

11104 Menaul Blvd. NE
Albuquerque, NM 87112

505-846-0909, 505-846-0467
black@jads.kirtland.af.mil, harris@jads.kirtland.af.mil

Keywords:
RTI testing, Latency, T&E, Electronic Warfare, Performance-oriented Federation, RTI test software

ABSTRACT: The Joint Advanced Distributed Simulation (JADS) Joint Test Force (JTF) is chartered by
the Office of the Secretary of Defense to investigate the utility of Advanced Distributed Simulation (ADS)
Technology, including the High Level Architecture (HLA), to Test and Evaluation (T&E). JADS is
executing three formal test programs, including the Electronic Warfare (EW) test, representing slices of
the overall T&E spectrum to form its conclusions. The EW test is using HLA and the runtime
infrastructure (RTI) version 1.3 to support two electronic warfare test events using a distributed cross-
country network linking an instrumented EW system, constructive models, and virtual simulations. The
JADS federation links six federates on six host computers passing attributes and interactions within
constrained timing tolerances representing opposing EW systems operating in a live test environment.

Prior to executing formal EW test events, JADS set up a test bed of federate host computers and long haul
communications components to be used for the EW test events. Systematic test procedures were used to
gather a series of performance benchmarks for the computer hosts, network components, and RTI
versions 1.02 and 1.3. Testing started with basic network tests using two directly connected computers
followed by adding communications components to the tests. The RTI and a test federate were then
installed on each computer. Tests progressed with incremental addition of computers and test federates
up to a total of six federates on six computers. When the JADS EW federate models and long-haul
network became available, final tests and benchmarks were accomplished. This test methodology
provided a series of filter screens designed to quantify RTI performance while isolating increasingly
complex federate interactions and implementation issues for detailed examination.

These software tools and test procedures were designed to verify the latency characteristics of the JADS
architecture prior to and after installation of the long haul T-1 network, implementing the actual EW test
federates, and performing the formal EW test events. This paper describes the results of measuring
latency, steps in tuning the network and RTI, and lessons learned from using a set of test cases oriented to
JADS federation performance requirements and RTI 1.3 software.

JADS Federation Description

The JADS EW test uses T-1 circuits, and
communications and encryption devices to link three test
locations in different states. The test links constructive
and virtual simulations to reproduce an EW test
environment on an open air range (OAR). In addition to
JADS, two key EW test facilities are involved: the Air
Force Electronic Warfare Environment Simulator
(AFEWES) and the Air Combat Environment Test and

Evaluation Facility (ACETEF). Three network nodes
interconnect a total of six federates representing critical
components of the OAR test environment including the
test aircraft, aircraft EW systems, and threat systems.
Four of the six federates execute on dedicated SGI O2
workstations in the JADS test control facility at
Albuquerque, New Mexico. There is one federate
executing on an SGI O2 at the ACETEF in Patuxent
River, Maryland, and one federate executing on an SGI
Challenge at the AFEWES hardware-in-the-loop facility

in Fort Worth, Texas. The federates at JADS in
Albuquerque will publish a combined 2 attributes at 20
Hz (i.e., 20 messages/second). The worst case instance
of the AFEWES federate will have 11 attributes
published at 20 Hz. The ACETEF federate will publish 1
attribute at 20 Hz. All nodes will publish interactions at
approximately 1 Hz. The largest JADS federation
attribute or interaction is 106 bytes not including the

overhead bytes added by network protocols or the RTI.
One execution of the JADS federation replicating a pass
on the OAR will take about four minutes. The test
federation and network architecture being used by JADS
is illustrated in figure 1. The JADS test bed uses the
same computer and communications components that
will be installed for the formal EW test events.

DSM
(Pent. PC)

Router

T1T1

AFEWES

JADS

RTI

Threats

L
o
g
g
e
r

RTI

API

IADS

I/F

RTI

API

A/C
Platform

I/F

V
o
i
c
e

V
o
i
c
e

Router

ACETEF

Voice Voice

Voice Voice

RTI
API

Test
Control I/F

I/F

RTI

API

R/F
Env.

I/F

ADRS
(Pent. PC)

T
A

M

S

RTI

API

DSM I/F

I/F

J
E

T

S

Router

T1

LoggerLoggerLogger

Logger

SGI Challenge

Logger

Figure 1. JADS EW Test Architecture and Federates

Due to the stringent performance requirements for testing
EW systems, JADS identified a maximum “end-to-end”
latency budget of 500 milliseconds(ms) round-trip
including facilities, networks, and software, and the
RTI[1]. This budget does not include actions taken by
the federate, e.g., the digital system model (DSM) or
AFEWES. Of this 500 ms, the RTI is allocated 140 ms
round-trip (70 ms each way). JADS selected the HLA to
use for the EW test to include it in the JADS evaluation
of the utility of ADS for T&E. Early on, JADS and
DMSO began working together on the use of HLA for the
EW tests. To maximize success in using the RTI, JADS
began work with DMSO to articulate our EW test design
and the need for a “performance-oriented” RTI in May
1997. The primary tool for documenting and
communicating JADS requirements to DMSO and the

RTI development community evolved into the Federation
Execution Planners Workbook [2].

Test Software

There are two types of software JADS developed for the
RTI tests. First, we developed software to send data one
way between two computers. There are versions of this
software that perform tests without an RTI (both TCP
and IP multicast), and there are versions that perform
tests using the RTI (reliable and best effort). RTI reliable
traffic is sent using TCP transmission. RTI best effort
traffic is sent using IP Multicast transmission. Using the
JADS test bed configuration, the non-RTI tests give an
approximation of the raw network performance. The
purpose of this software is to characterize the network in
the simplest of cases. The second type of software we

developed was an RTI federate capable of running in
different configurations on multiple computers within a
federation execution. The purpose of this software is to
determine how the RTI performs in a more realistic
environment under loads anticipated for the JADS
federations.

In all JADS tests, latency and lost data are the two
metrics examined. To track lost data, all of our messages
(either attributes or interactions) contain a serial number.
To calculate latency, the send time is included in the
message. When a message arrives, the receive time is
saved with the send time to be used to calculate the
latency. For this design to work, the system time for all
the computers that participate in a test must be
synchronized. In the JADS test federation, we will be
using Datum BanComm GPS cards to accept an IRIG B
or GPS input to synch the time. These cards were not
available when we began RTI testing so we used the
Network Time Protocol (xntp) software to synchronize
the clocks on all test computers.

We have a GPS receiver that provides time to one of the
computers via its serial port. This computer is the
Stratum-1 time server. All of the other computers in the
network receive their time from the time server. It takes
a few days to get the whole system initially configured
and settled down. After that, the system time on all
computers remains within 1 ms of GPS time. The xntp
software generates statistics on how well it is keeping

time. We used a Datum BanComm card to verify that the
offset reported by the xntp software was accurate.

Two Node Test Description

The RTI test hardware configurations progressively
increase in complexity until the entire federation and
network architecture (except for the T1 lines) is in place
in the JADS test bed. Starting with a two computer
point-to-point configuration, we gathered basic
performance data for network IP Multicast data, network
TCP data, RTI 1.0-2 best effort data, RTI 1.0-2 reliable
data, RTI 1.3 beta (1.3b) best effort data, RTI 1.3b
reliable data, RTI 1.3-2 Early Access Version (RTI 1.3-
2EAV) reliable data, and RTI 1.3-2 (early official
release) reliable data.

The two node test configuration is shown in figure 2. The
test configuration included all network components using
a two-node network for the same series of tests. The
associated communications link and hardware/software
configuration are also being tested. All sources of
possible latency were computed through a disciplined
process of adjusting one variable at a time and collecting
recorded time data for the same message type in differing
reference test conditions. The two-node network test
used an SGI O2 5000 and an SGI O2 10000 running
IRIX 6.3. The test software and RTI were hosted on each
computer for all tests using this configuration.

Hub

O2
R5000

Micro-IDNX-20 Micro-IDNX-20

V
oice

T
runk

T
runk

R
outer

V
oice

T
runk

V
oice

T
runk

V
oice

R
outer

Hub

O2
R10000

KIV-7HS

CSU / DSU

KIV-7HS

CSU / DSU

Figure 2. JADS 2 node RTI test bed configuration with communications devices

Standard Test Methodology for Two-Node Test

(1) Baseline the hardware configuration performance
without RTI.
(2) Install RTI software.

(3) Run attribute size tests, attribute rate tests, interaction
size, RTI polling interval (and duration) tests using best
effort transport with multicasting.
(4) Add network communications hardware components.
(5) Repeat steps 1 through 4 for the second configuration.

(6) Compare latency data for different hardware/RTI
software configurations. Attribute and interaction
message rates, sizes, and tick were each examined
around the values specified in the JADS Federation
Execution Planners Workbook.

One -Way Software for Two-Node Tests

The one-way software is designed to exercise the network
and the RTI with different data sizes and transmit rates.
The size is varied between 17, 51, 101, 301, 501, and
1001 bytes. The transmit rate is varied between 5, 10,
20, 50, 100, 200, 400, and 500 Hz. The complete matrix
of rate and size combinations was tested. Each test case,
defined by a specific rate and size pair, ran for thirty
seconds. For the RTI version of the one-way software, a
separate matrix was generated for attributes sent as
reliable and best effort. Initially, only one test of each
pair was run.

There are two programs that must be run in the one-way,
network only (no RTI) tests – a sender and a receiver.
The programs used for the JADS tests are: tcp_sender,
tcp_receiver, ipmc_sender, and ipmc_receiver. To
generate a test matrix, first start the receiver on one
computer (the “to” computer). Then, start the sender on
another computer (The tcp_sender program requires that
you specify the node name of the computer upon which
the receiver is running). The sender then loops through
each test case of size and rate, sending data to the
receiver. At the start of each test case, the sender
transmits a start message to the receiver indicating the
size, rate and total count of messages to be sent. This
information is used by the receiver to name the output
file and to determine if any messages were lost. After
sending the control message, the sender transmits the
data. The data message contains a sequential serial
number and the time (i.e., when it was time-tagged in the
sending code) the message was sent. When a message
arrives at the receiver the system time is obtained. The
receiver stores the time sent and time received in an array
indexed by the serial number. After sending all of the
data for a test case, the sender transmits an end message.

When the receiver gets the end message, all of the data
from the test case is written to the data file. To eliminate
its effect on the latency calculation, no I/O occurs while
the data is being transmitted. The data file contains a
record for each message that should have been received.
If the message was received, the serial number, send
time, receive time, and latency are written to the file.
Prior to each test case, the receiver initializes the start
times to zero. At the end of a test case, if the send time is

zero for a serial number, then that message was not
received. In this case, the serial number and the word
MISSING are written to the output file. A summary file
is also created by the receiver. There is a record in the
summary file for each test case that was run. The record
contains the data filename followed by the minimum,
maximum, and mean latency for the test case.

This sequence of steps is repeated for every combination
of size and rate. Due to the fact that the some of the high
data rate and size combinations disrupt the network, the
sender waits 5 seconds between test cases. When all test
cases have been run, an additional end message is
transmitted by the sender indicating that the test is done.

There is only one federate program used for the one-way
RTI tests. It is called test. Test accepts command line
parameters that tell it to run as the master (-m) or the
slave (-s). To generate an RTI test matrix, first start the
test federate as a slave on one computer. After a message
is displayed that the slave is waiting for data, start the
test federate as a master on another computer. The
processing steps for the test federate are the same as the
steps for the network tests. It produces data files and a
summary file in the same format as the network software.

One-way Test Results

For the network IP Multicast tests (no RTI), the
minimum, maximum, and mean latencies were between
7 and 20 ms until we began sending 301 bytes at 500 Hz
(a much higher rate than we will be transmitting in the
JADS federation). There were no lost messages in the
tests below 301 bytes at 500 Hz. In the tests that lost
data, the latencies became over 100 ms (up to 450 ms).

For the network TCP tests (no RTI), there is a significant
increase in the latency once you transmit at rates greater
than 5 Hz. There are also large variations between the
minimum and maximum latencies among the test cases.
At transmit rates of 5 Hz, the minimum latencies were
between 7 and 15 ms, the maximum latencies were
between 20 and 35 ms, and the mean latencies were
between 8 and 17 ms. At transmit rates above 5 Hz, the
minimum latencies were 8 - 15 ms, the maximums were
200 - 500 ms, and the mean latencies were between 50
and 400 ms. It becomes clear from looking at a plot of
the data from one trial (Figure 3 below) that the data is
being buffered somewhere. Upon further investigation,
we determined that the buffering was caused by
implementation of the Nagle algorithm [3]. The Nagle
algorithm buffers small packets on the transmit side until
an ACK is received from the previous transmit. On SGI

computers, the network can wait up to 200 ms before
sending the buffered packets. This explains the jump in
latency at transmit rates over 5 Hz. By default, TCP

sockets on SGIs run with the Nagle algorithm enabled.
To disable the Nagle algorithm, specify TRUE for the
socket option TCP_NODELAY.

0 . 0 0 0

0 . 0 5 0

0 . 1 0 0

0 . 1 5 0

0 . 2 0 0

0 . 2 5 0
1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

L
at

en
cy

 (
se

co
n

d
s)

Figure 3. TCP Latency 101 bytes at 20 Hz

With the Nagle algorithm disabled, minimum and mean
latencies were all between 7 and 20 ms up until the
sender started transmitting 301 bytes at 500 Hz. In these
tests, some of the maximums were as high as 100 ms.
The cause of these intermittent spikes is still being
investigated. For the tests transmitting 301 bytes (or
more) at 500 Hz, the maximum latencies were more than
3 seconds with mean values of around 500 ms.

In the RTI 1.0-2 best effort tests, the latencies were
slightly higher than the network IP Multicast tests (mean
latencies between 9 and 24 ms). Just as in the Multicast
tests, the receiver began to lose data and latencies
increased when the sender transmitted 301 bytes at 400
Hz.

The RTI 1.0-2 reliable tests also show the effects of the
Nagle algorithm, but the latencies are much higher than
those of the TCP network tests. At transmit rates above 5
Hz, the maximum latencies were between 170 ms and 1
second, and the mean latencies were between 70 and 300
ms.

In the RTI 1.3b best effort tests, data loss occurred with
smaller packet sizes than in the 1.0-2 tests. This was due
to the fact that RTI 1.3b data packet headers were 400
bytes long. Data packet headers in subsequent versions
of the RTI are approximately 80 bytes long. Other than
that, the results were similar to the 1.0-2 tests.

The RTI 1.3b reliable tests still show the effects of the
Nagle algorithm. It wasn’t until after we ran the RTI

1.3b tests that we discovered the problem with the Nagle
algorithm and how to disable it. With this version of the
RTI, the reliable traffic was having problems even at 5
Hz. The maximum latency for the 5 Hz tests was
between 200 and 300 ms, and the mean latency was
between 40 and 120 ms. Also, for the tests using larger
sizes at higher data rates (e.g. 301 bytes at 500 Hz), the
maximum latencies were between 10 and 55 seconds, and
the mean latencies were between 4 and 55 seconds.

We provided our RTI 1.3b results to DMSO along with
the information we learned regarding the Nagle
algorithm and the TCP_NODELAY socket option. The
RTI 1.3 development team modified the RTI to disable
the Nagle algorithm for all reliable traffic. They also
incorporated other modifications into RTI 1.3-2EAV
with the objective of improving performance for reliable
traffic.

In the RTI 1.3-2EAV reliable tests (with the Nagle
algorithm now disabled), the performance of reliable
traffic drastically improved. With the sender publishing
up to 301 bytes at 400 Hz, the minimum latencies were
between 8 and 12 ms, and the maximum latencies were
between 10 and 200 ms. Once again, we observed
intermittent latency spikes that cause problems. When
the master federate tried to publish 301 bytes at 400 Hz,
reliable data was lost. When it tried to publish 501 bytes
at 400 Hz, the slave federate crashed. These problems
never occurred in previous tests of RTI versions.
However, they are outside of the JADS expected

performance requirement. Figure 4 shows the RTI 1.3-2
reliable test matrix.

The results are similar to the 1.3-2EAV results. The
RTI had problems when the federate began

transmitting 301 bytes at 400 Hz. It eventually
terminated with an RTI internal exception.

 RTI 1.3-2 Reliable
Minimum Latency (sec)

Packet Size (bytes)
Rate(Hz) 17 51 101 301 501 1001

5 0.008 0.008 0.008 0.010
10 0.008 0.008 0.008 0.010

 20* 0.007 0.008 0.008 0.010
50 0.007 0.008 0.008 0.010
100 0.007 0.008 0.008 0.010
200 0.007 0.008 0.008 0.010
400 0.007 0.008 0.008 **
500 0.007 0.008 0.008

 Maximum Latency (sec)
Packet Size (bytes)

Rate(Hz) 17 51 101 301 501 1001
5 0.009 0.009 0.009 0.011

10 0.031 0.009 0.014 0.011
 20* 0.009 0.010 0.013 0.039
50 0.011 0.010 0.010 0.013
100 0.011 0.017 0.015 0.023
200 0.086 0.014 0.019 0.012
400 0.037 0.019 0.073 **
500 0.023 0.057 0.170

Mean Latency (sec)
Packet Size (bytes)

Rate(Hz) 17 51 101 301 501 1001
5 0.008 0.008 0.009 0.010

10 0.008 0.008 0.009 0.010
 20* 0.008 0.008 0.008 0.010
50 0.008 0.008 0.008 0.010
100 0.008 0.008 0.008 0.010
200 0.008 0.008 0.008 0.010
400 0.008 0.008 0.009 **
500 0.008 0.008 0.010

Notes: * Values within the border indicate JADS EW expected rates and sizes
 ** The slave had problems receiving 301-bytes @ 400 Hz and above

Figure 4. RTI 1.3-2 Reliable Test Matrix

Three Node Test Description

These tests were designed to assist JADS in
optimizing the performance of the RTI as well as the
JADS EW phase 2 test federation components. The
major objective of these tests was to establish the
performance baseline for the RTI and provide
necessary feedback to JADS management as well as

the RTI developers. Once the RTI version 1.3
performance baseline is determined by JADS testers,
further testing, integration, and tuning of all
federation components will be performed supporting
phase 2 implementation. These tests are the final
benchmarks prior to the implementation and testing of
actual phase 2 test software federates with the
AFEWES surrogate federate during August 1998.

The test environment expanded from the two node
configuration and used at least 3 and as many as 6 SGI
O2 workstations (either R5000 or R10000 models)

running IRIX 6.3. The three node test configuration
in the EW test bed with three SGI computers is shown
in figure 5.

Hub

O2
R10000

IDNX-20

R
outer

T
runk

T
runk

V
oice

V
oice

Hub

O2
R5000

Micro-IDNX-20 Micro-IDNX-20

V
oice

T
runk

T
runk

R
outer

V
oice

T
runk

V
oice

T
runk

V
oice

R
outer

Hub

O2
R10000

KIV-7HS

CSU / DSU

KIV-7HS

CSU / DSU

KIV-7HS

CSU / DSU

CSU / DSU

KIV-7HS

CSU / DSU

KIV-7HS

KIV-7HS

CSU / DSU

Figure 5. 3 node RTI test configuration with communications devices

In order to expand testing from the three owned SGI
computers available at JADS to a total of six SGIs, JADS
decided to lease three additional SGI O2 computers.
These computers were delivered and installed in May
1998 to provide an expanded test bed of 6 computers to
match the Phase 2 configuration.

Multi-Federate Software for Three-Node Tests

After characterizing the network and the RTI in the
simple one-way tests, we wanted to determine whether
the RTI would support the anticipated loads placed on it
by the JADS federation. We wanted a test federate that
could simulate these kinds of loads. The testfed federate
was developed to satisfy these requirements. It can be
executed on as many computers as necessary. The testfed
federate accepts command line arguments that specify the
characteristics of an instance of the federate. The user
can specify the federate ID number (-f), the duration of
the test (-d), the size of the attributes and interactions (-
s), the rate that attributes are published (-r), the number
of updates at the specified rate (-n), the amount of time

the federate should wait before starting to publish at its
specified rate (-w), and whether interactions should be
published (-i). There is an additional argument (-c) that
indicates which federate is the controller. There must be
one and only one controller federate in the testfed
federation. There is only one attribute and one
interaction used by all federates. All federates subscribe
to the attribute and the interaction.

Three-Node Three-Federate Tests with RTI 1.3-2EAV

Initially, we could only execute a three-federate test,
because we only had three SGI O2 computers. For the
three-federate test, we configured testfed on one
computer to publish 11 attribute updates at 20 Hz
(simulating the AFEWES federate). We configured
another instance of testfed to publish 2 attribute updates
at 20 Hz (simulating the federates at the JADS
Albuquerque node). The third instance of testfed was
configured to publish 1 attribute update at 20 Hz
(simulating the ACETEF node). All three federates
published interactions at approximately 1 Hz. The size

of attributes and interactions was 121 bytes. Attributes
were published best effort. Interactions were published
reliable. We ran multiple tests with a duration of
between two and five minutes. Initially, many attributes
were lost at the very beginning of a test. We surmised
that there may be a problem with all federates beginning
to publish at their specified rate all at the same time so
we implemented the wait option (-w). The wait option
tells the federate how many seconds to send attribute
updates at 1 Hz. When the wait period expires, the
federate publishes attribute updates at its normal rate.
After we began using the wait option, the missing
attributes at the beginning of the test were eliminated.

Some runs have only a few attributes lost with maximum
latency less than 45 ms. Other runs have up to 100
attributes lost with maximum interaction latency of over
1 second. We ran three tests with all federates on the
same LAN. One of these tests had a maximum
interaction latency of over 1.5 seconds. So, the problem
does not seem to be caused by the communications
equipment (routers, etc.).

Three-Node Six-Federate Tests with RTI 1.3-2EAV

After we leased three more SGI O2 computers, we ran a
more realistic test with six federates on six computers on
three network nodes. The six-federate tests produced a
wide variety of results. We had a few runs where only
one or two best effort attributes were lost and the
maximum latency was less than 50 ms. There were some
runs that had up to 100 attributes lost and an occasional
high interaction latency of between 1 and 8 seconds and
there were some runs that had federates that crashed. We
reported these results to DMSO. Subsequently, the
DMSO RTI development team found a software “bug”
that limited the number of federates that could execute in
a federation.

Three-Node Three-Federate Tests with RTI 1.3-2

We ran five tests with the same configuration: Federate 1
publishes 11 attribute updates at 20 Hz with interactions
sent at 1 Hz; Federate 2 publishes 1 attribute update at 20
Hz with interactions sent at 1 Hz; and Federate 3
publishes 2 attribute updates at 20 Hz with interactions
sent at 1 Hz. All five tests had at least one federate with
a maximum latency greater than 70 ms. The largest
maximum latency value was 1.79 seconds. There were
two tests that had a maximum value over 250 ms.

Three-Node Six Federate Tests with RTI 1.3-2

We ran two 5-minute tests and six 3-minute tests with six
federates on three nodes. There were no runs that had
federates that crashed. Therefore, this problem appears
to be fixed. However, in the one of the 5-minute tests, all
of the federates had an interaction maximum latency over
3 seconds (the worst was 10 seconds). Five of the six
federates in the second test had interaction maximum
latencies above 700 ms (the worst was 2.2 seconds).

Lessons Learned

JADS experience with testing versions of the RTI proved
to be an iterative process of identifying problems and
implementing solutions. The problems related to the RTI
were discussed directly with DMSO who worked with
JADS to resolve the problems. This process reflects the
type of RTI performance tuning JADS experienced.

Time-To-Live

In the initial tests we performed with RTI 1.0-2, best
effort traffic was not received at any computer on a
different LAN. Using a network sniffer to look at the
network data packets, JADS discovered that the Time-
To-Live value was set to 1. A packet’s Time-To-Live
value indicates how many hops it can take before it is
discarded by the network. A value of 1 does not allow a
packet to exit the LAN. A federation running with RTI
1.0-2 out of the box would not allow federates to
communicate best effort traffic outside of a LAN. Using
the JADS 2 node network configuration (shown in Figure
2) required network data packets to cross from one LAN
through the routers (Micro-IDNX-20) to reach the test
federate on another LAN mirroring the JADS EW phase
2 network architecture. JADS was provided a special
library from DMSO that allowed us to use RTI 1.0-2
across our network communications gear. Subsequent
versions of the RTI provide for a user-defined parameter
value in the RID file to set Time-To-Live.

TCP No Delay and the Nagle Algorithm

The Nagle algorithm buffers small packets on the
transmit side until an acknowledgment (ACK) is received
from the previous transmit. On SGI computers, the
network can wait up to 200 ms before sending the
buffered packets. This explains the jump in latency at
transmit rates over 5 Hz. By default, TCP sockets on
SGIs run with the Nagle algorithm. To disable the Nagle
algorithm, the programmer must specify TRUE for the
socket option TCP_NODELAY.

Prior to RTI version 1.3-2, the RTI runs with a default
setting for the TCP_NODELAY socket option. On the
SGIs, the default value is FALSE. This means that the
Nagle algorithm will be in effect for both attribute and
interaction data sent reliable. If data is published using
reliable transportation at data rates at or above 5 Hz, then
the latency of the data is increased significantly. As a
result of sharing this information with RTI developers,
RTI version 1.3-2 sets the TCP_NODELAY option to
TRUE, disabling the Nagle algorithm.

Tick

The tick function is how a federate transfers process
control to the RTI so it can do its work. As we
implemented and experimented with tick during initial
test runs with each RTI release, we learned how
important it is to understand how tick works in its
various forms in order to tune a federation properly. The
user’s federates must constantly tick the RTI or nothing
will happen in the federation. There are two variations
to tick: one has no parameters (tick (), the other has a
minimum and maximum value (tick (min, max). The
tick function called with no parameters empties its queue
before it returns to the federate which could starve the
federate from getting its necessary processor time.

The tick function called with a minimum and maximum
value (tick (min, max)) will stay in tick at least the
amount of time specified by the minimum parameter, but
no longer than the maximum parameter. If the RTI
empties its queue before the minimum time elapses, it
will try to sleep for the rest of the time. On an SGI, this
is a problem because the minimum sleep (i.e., sginap or
select) time is 10ms. As a result, if the RTI user specifies
a minimum value of 10 ms and the RTI uses 9 ms to do
its work, an SGI will sleep for an additional 10 ms. If
zero or some small number is specified for the minimum,
the RTI will not sleep. This can cause the federate/RTI
to use as much as 90% of the CPU. We benefited greatly
from open communication with RTI developers about
features of tick and verifying the results we obtained from
different settings. Unfortunately, we did not find any
documentation source for tick features and tuning ideas.
We advised developers that this information is very
beneficial to all but the casual RTI user. Each federation
and its architecture is different and it will require some
experimentation by the federation developers to find the
optimum use of tick.

Initial Publication Rates

When a federate starts, we found that it is best if it
publishes some initial data at low data rates to set up the

network. In the JADS tests with three federates (one
published 11 updates at 20 Hz, one published 2 updates
at 20 Hz, and one published one update at 20 Hz), best
effort data was lost and reliable data had high latencies in
the initial burst of data. When we added a 5 second
delay at the start, during which the federates published
data at 1 Hz, these startup problems were eliminated.

Fast malloc

There is a library on SGIs that provides a faster version
of malloc (used to dynamically allocate memory). To use
this library it must be linked with your software with the
-lmalloc option. In an attempt to make it as efficient as
possible, the JADS RTI logger was linked with this
library. While running RTI tests linked with the logger,
the federate would crash after it resigned from the
federation. After speaking with the RTI development
team, they said they were aware of problems using this
library and recommended not using it.

Network Optimization

During a conversation to discuss the latency problems,
representatives at ACETEF mentioned that their facility
used Ethernet switches to eliminate problems that might
be caused by collisions over a shared Ethernet
configuration like the JADS test bed. JADS purchased
and installed an 8-port Ethernet switch for use in the
dedicated test bed. This increased the test bed LAN's
performance well beyond that of the previous 10 Mbps,
half duplex LAN. Recent two-federate testing with the
testfed tool for a 5-minute test has shown that the
Ethernet collision rate has dropped from about 500 -
1000 collisions to 0 collisions! While this LAN
improvement has not eliminated all the latency problems
observed during tests of RTI 1-3.2 (because Ethernet
collisions were not the only cause of them), it seems to
have significantly reduced, directly or indirectly, the
frequency of the 1-second-class latency events.

All TCP Implementations Are Not the Same

The RTI is developed on Sun/Solaris machines. It has
been optimized to run in this environment. The
implementation of TCP on SGI/IRIX machines (and
others) is different than the implementation of TCP on
Sun/Solaris. Since TCP is a major Internet protocol, one
might naively assume all TCP implementations were
developed and tested to conform to the same "standards"
and they all operate in more-or-less the same manner.
JADS found information in the TCP literature[4]
showing this naive view to be incorrect. For example,
the current IRIX TCP on the SGI systems at JADS,

AFEWES, and ACETEF is very likely to be one of the
"Berkeley-derived implementations", but the current
Solaris TCP used by the RTI's developer is very likely to
be an "independent" implementation by Sun
Microsystems. Furthermore, various TCP
implementations are known to respond differently in
time-critical situations. This suggests that distributed
simulations running the same federates over the same
LANs and WANs might exhibit different behavior on
SGIs than on Sun/Solaris machines because of
differences in the underlying TCP implementations.

Summary

This paper documents the methodology, accumulated
experience, and current results of JADS RTI test
activities conducted between March and July of 1998. In
this time frame, the following RTI versions for SGI/IRIX
6.3 were tested:

RTI Version Date Released
1.0-2 February 1998
1.3b 3 April 1998
1.3-2 EAV 15 May 1998
1.3-2 15 June 1998
1.3-4 September 1998

Based upon the latency values measured for the most
recent RTI software release, further tests will be
conducted as further resolution of latency problems are
accomplished by DMSO and JADS. As documented in
this paper, much has been accomplished and learned by
both JADS and DMSO’s RTI team from this effort. The
progress made and lessons learned so far represent a
significant advance in characterizing and reducing RTI
latency as well as improving RTI features. However, the
results measured to this point do not satisfy JADS criteria
for success.

DMSO has provided significant support to address RTI
problems as they were discovered. The DMSO release of
the “formal” RTI version 1.3-2 for IRIX 6.3 SGI

workstations is scheduled on 30 June 1998. JADS will
conduct further tests of the RTI software with DMSO.

References

[1] D. Wright and C. Harris: “Testing RTI/Network
Interactions for Latency”, SISO Spring 98 Simulation
Interoperability Workshop, paper 98S-SIW-152.
[2] D. Wright and C. Harris: “Determining and
Expressing RTI Requirements”, SISO Spring 98
Simulation Interoperability Workshop, paper 98S-SIW-
158.
[3] W. Richard Stevens: “TCP Interactive Data Flow”
TCP/IP Illustrated - Volume 1, Addison-Wesley,
Massachusetts 1994.
[4] Vern Paxson: “Automated Packet Trace Analysis of
TCP Implementations”, Proceedings of SIGCOMM ’97,
technical paper.

8. Author Biographies

Clyde Harris is a Senior Systems Engineer for SAIC
working with the JADS Joint Test Force in Albuquerque,
NM, since 1994. He has over 27 years total experience
in software and systems engineering involving
communications systems and medical, command and
control, intelligence, and logistics information systems
for commercial business and DoD. His current area of
focus spans over 8 years in test and evaluation of
computer and communications systems and diverse
applications.

Jerry Black is a Senior Software Engineer for SAIC in
Albuquerque, New Mexico. He received a B.S. in
Computer Science from the University of New Mexico in
1981. Mr. Black has over 17 years of experience
developing software for DoD applications including
flight software testing, imagery intelligence training, B-2
FOT&E, and real-time data collection. He has been
supporting the JADS Joint Test Force as a software
analyst responsible for time synchronization, data
collection and analysis since 1995.

